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MEMBRANE ANALYSIS OF SCALLOPED SHELLS
By Ravindra K. Vyas

Ames Research Center

SUMMARY

The main objective of this report is to contribute to the understanding
of menbrane forces in scalloped shells, particularly scalloped paraboloids.
It is shown how the stress function approach, used successfully in the mem-
brane analysis of elliptic and hyperbolic paraboloids, can be applied to the
scalloped paraboloids. In order to demonstrate the technigue, two scalloped
structures having practical significance as structural models for parachutes
are discussed in detail. In the cases considered, it is shown that the stress
function must satisfy a linear second-order partial-differential equation
with variable coefficients. The basic method for solving this equation is
given in the first appendix. For comparison purposes, numerical results for
similar shells of revolution are also presented. These results show that the
hoop and meridional stresses in the parachute type structure are lower than
those in a corresponding shell of revolution. More significantly, the merid-
ional stress in the parachute type shell decreases remarkably, and even
becomes compressive, as the bulge of the scallop, defined by a positive param-
eter B, is increased. It is shown how a critical value, PBey, of this bulge
parameter can be obtained below which the shell would remain in a compression-
less state. A singular solution used in prescribing rope tension near the
opening of the parachute type shell may also be useful in other aspects of
parachute analysis.

A brief review of the scope and the limitations of the method and the
possibility of extending it to other scalloped shells of the same family, is
presented in a separate section. Suggestions for further work are included
in the concluding remarks.

INTRODUCTION

The advent of the space age is largely responsible for a growing inter-
est in new structural concepts and techniques. Promising among the newer
concepts are those of filament-wound structures and expandable structures.
With these advances in technology, there exists a parallel need for theoreti-
cal investigations of different structural forms. The menbrane analysis of
one such form, the scalloped shell, is presented in this report.

As opposed to shells of revolution, scalloped shells have been rela-
tively unexplored as structural forms. The parachute 1s, perhaps, the only
form of scalloped structure that has been studied in any detail., An inter-
esting history of the parachute and its development as a decelerating device
is given in reference 1, which contains, in addition, valuable information



about various aspects of parachute performance and design. The earliest pub-
lished attempts at parachute stress analysis date from 1923 when the work of
Taylor, Southwell, Griffiths, Jones, and Williams, on ideal shapes of para-
chutes, was compiled by R. Jones in reference 2. Since then, several authors
have continued this work, studying the many different aspects of parachute
performance and design.

Most of the work concerning parachutes has been based on certain simpli-
fying assumptions regarding the character of stresses in the surface. These
assumptions can be broadly classified into three categories as follows:

(a) The circumferential stress in the parachute is either negligible (ref. 2)
or negligible within a certain critical radius (ref. 3). This position was
taken by the early investigators; (b) It is the meridional stress which is
negligible rather than the hoop stress (refs. 4 and 5); (c) The circumferen-
tial stress is proportional to the product of the applied pressure and a ref-
erence radius. The meridional stress is assumed either negligible, for
certain cases, or obtainable from the conditions of equilibrium (ref. 6).

The present work differs from parachute stress analysis in two important
respects. First, the emphasis here is on the membrane analysis of scalloped
surfaces as shell structures. The shells discussed in detail belong to the
general class of surfaces designated as bulged or scalloped paraboloids, of
which the parachute type structure is only one member. OSecondly, since the
investigation is based on the membrane theory of shells, no a priori assump-
tions are necessary regarding the nature of stresses - and none are made.

The method of analysis relies on the stress function approach postulated
in the membrane theory of shells of arbitrary shape. This stress function
approach has been successfully used in the past for solving the problems of
elliptic and hyperbolic paraboloids, and it is shown in this report that this
method can also be successfully applied to a more general class of scalloped
shells, which includes the scalloped paraboloids as special cases, In order
to demonstrate the method, the solutions for two different types of scalloped
structures are discussed in detail. Since the loading and boundary condi-
tions prescribed for these two structures could also apply to comparable
parachutes, it is conceivable that these structures could serve as structural

models for parachutes.
The technique used in this paper can also be applied to a wider variety

of loading and edge conditions than those considered in the two examples. A
more detailed discussion of the scope and the limitations of the method is

given in a separate section.

NOTATION

A surface parameter used to define the scalloped parabcloids

An  undetermined coefficients associated with the homogeneous solutions ¥ypy
a reference radius, also maximum radius
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coefficients of a power series in x (appendix B)

undetermined coefficients associated with the homogeneous
solutions Yyp

radial distance to the inner opening
coefficients of power series in x (appendix A)

function of p and x; denotes right hand side of an
inhomogeneous partial differential equation

functions of x

function of x
normal component of the forces acting on the rope (fig. 9)

functions of x
functions of x

normal distance from the apex of the shell to a horizontal
plane passing through the point (r = a, 6 = 0)

constant associated with a singular solution; also a subscript
critical value of the constant k

linear differential operator

summation index; also subscript

number of segments or gores

membrane forces per unit length in the tangential plane of
the shell (fig. 2)

projected membrane forces (fig. 2)

summation index; also denotes a power of r and powers of X
dimensionless membrane forces

concentrated load at the apex in the Z direction

reference load intensity, also uniform normal pressure

r,8,z components of the load intensity
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Q(x)
dr,99,9z

R(x)

y(x)

z(r,8)

reduced load intensities
function of x (appendix B)
dimensionless load intensities

function of x (appendix B)

polar distance in cylindrical coordinates (fig. 1), also a
subscript

summation index
rope tension
function of x (appendix A)

transformed coordinate corresponding to the angular distance 6
in polar coordinates

constant used in defining the range of the variable x

function of x (appendix B)

vertical coordinate defined as a function of polar coordinates
r,0 to define the middle surface of the shell

angle between a tangent to the middle surface and the r direc-
tion; also used as a subscript and to denote a power of the

variable p
coefficients of powers of x in the series solutions

bulge parameter used in defining the scalloped paraboloids; also
used as a subscript

critical value of the bulge parameter
coefficients of powers of x in the series solutions

angle between a tangent to the middle surface and the 6 direc-

tion; also used as a subscript, denotes power of p
coefficients of powers of x (appendix A)
denotes a power of p
coefficients of powers of x (appendix B)

angular distance in cylindrical coordinates (fig. 1)
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constant used in defining the range of the variable 6

used to denote powers of p in the separated solution
eigenvalues

constant, describes the ratio of height h to the maximum radius a
coefficients of power series in x (appendix B)

constants of integration (appendix A)

constant related to prescribed edge forces (fig. 10(b))
dimensionless radial distance

dimensionless radius corresponding to an opening at r = Db
postulated stress function

homogeneous solution corresponding to the separated form pkqu(x)
dimensionless stress function

solution of a homogeneous differential equation subJject to
homogeneous boundary conditions

homogeneous soluticns corresponding to eigenvalues Ny
particular solution of an inhomogeneous differential equation
subject to inhomogeneous boundary conditions
Subscripts
critical values of parameters
homogeneous solution
individual components of homogeneous solution

particular solution

MEMBRANE EQUATIONS

Consider a thin shell whose middle surface is defined by the relationship

I

Z = Z(r,0)



which expresses the vertical coordinate 2 of the middle surface as a func-
tion of the polar coordinates, r,0 (fig. 1). A differential element of this
surface is shown enlarged in figure 2. The element is contained between two
ad jacent vertical planes, 6 = constant, and two adjacent vertical cylinders,
r = constant. It is acted upon by the loads py, Do, Pz (per unit area of
the middle surface) and supported by the membrane forces Ny, Ng, Nyg. The
latter quantities are forces per unit length of the line element through
which they are transmitted.

The membrane equations, which Ny, Ng, Nyg must satisfy in order to
assure equilibrium, can be conveniently written in terms of the projected?l
stress resultants N,, Ng, N.g and the reduced load intensities Dy, Dgs Dy
as follows:

10 [ = 10 /= N =
roe () rrgg (ko) m5h e ()
1 0 ,— Q0 /= NI‘G_—
E 3 (M) + 5 (Npg) +2 — = B, (1v)

1 0 /o7 = 10 (10Z% \_. =
+?$GWOW£G$%>$Z<M

where
_ \
Nr=%1\1r
o = osa Yo | (2)
Npg = Nro J

(cos® 7 + cos® a sin

r cCOos o cos 7Y

(cos2 7 + cos2 a sin2 y)/2
cos a cos 7

(cos® a + cos2 o sin2 7)1(2 (3)
Ccos @ cos ¥

0%

tan o = =—

or

1 %z

T e J

tan ¥

lprojected on a plane z = const. (fig. 2).




With the introduction of the following dimensionless stress resultants
and load intensities,

ﬁrw
nr—sa
Ng
n = 2 ) ()
ﬁ}e
ne:_—-
T pa |
D, )
Q.r:_é—
D
qe=—PQ$ (5)
Py
Qy, = =
Z p)
where p 1is a reference load intensity and a 1is a reference radius = r,
the equations (la) - (lc) can be written as follows:
) ) + 1 3 nyp - ng _ 4y
2 (n,) += = (npag) + XT—2 = - =X 6a.)
ar(r rae(re r a (
19 (n) +9 (n )+2£Q=_q£ (6b)
Ty 9 or T r a
<aaz+;% L2 9%z 1 9%z e+%anr+;_6_ganre
dr ror/ T T ar oo 2 362 dr dr T J8 or
on dn a
L1026 1 029 Gz g
Tor o6 r2 06 06 a

Equations (6a) - (6c) are applicable to any shell surface of arbitrary
shape, in cylindrical coordinates, so long as there exists a one-to-one cor-
respondence between points of the middle surface of the shell and their pro-
Jections on a horizontal plane (Z = const.). If the forces n., ng, n,g are
defined in terms of an Airy type stress function ®(r,6) such that



re T 25 T T or o8 )

then, it can be verified that equations (6a) and (6b) are automatically
satisfied and equation (6c) reduces to:

19z, 1 &%z §2_®+<3§z__2_ 62Z> 9
r dr T2 392/ or2 r3 39 T2 3dr 36/ Or
+<L52_Z u@u ag.u@ %7 _ 2 92) 3¢

r2 orz2/ 3g2 r dr2/ or 3 3r 09 rt 00/ 98

=_qz+§§qr+la_z__qﬁ+<}_?i%+a_z_>f\ .qﬁd_e
r or,

r 3g2 a
2

+——6§<—l- frq—rdr+;frdrf£d9 (8)2
ar r a r a

The governing equation (8) is a second-order partial differential equa-
tion, and, depending on the choice of surface, may have either constant or
variable cocefficients. The stress function approach has been successfully
used in the past for solving problems of elliptic and hyperbolic paraboloids.
For each of these cases equation (8) has constant coefficients and is reduc-
ible to a standard form: the former to the Poisson's equation, the latter to
the wave equation. In the case of the scalloped paraboloids, equation (8)
has variable coefficients, as will be seen later.

THE SCALLOPED PARABOLOID

The middle surface of the scalloped or bulged paraboloids may be defined
by the relationship

7 = Ar2(1 + Pe2) -0, <6 %6, , 0, < 7, B >0 (9)°

2Reference T gives a similar formulation in rectangularigbordinates.
3The shell surface, it may be noted, is symmetric with respect to the
plane 6 = 0.
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where A, B are constants. The parameter B defines the bulge of the
scalloped surface and may be called the bulge parameter. It should be noted
that when B equals zero, equation (9) describes a paraboloid of revolution,
hence, the designation "bulged” or "scalloped" paraboloid.

Such a shell, like any other structure, can be loaded in many different
ways. As a roof structure, it may be loaded by gravitational and wind loads.
As a pressure vessel bulkhead, it may be subjected to a uniform or varying
normal pressure. As a parachute type structure, a uniform normal pressure
would constitute a reasonable loading. In the analysis to follow, a uniform
normal pressure will be assumed.

Assuming the surface segment defined by equation (9), then the load
intensities, the definitions (3) and (4), and the equilibrium condition (8)
take the form

_ sin a cos ¥ B
Py = ) o ) 12
(cos2 a + cos2 a sin2 7y)
cos a sin ¥
Pg = 2 2 .2 1z P
(cos? a + cos® a sin2 y)
_ cos & CcOS ¥
pz = - -

(cos2 a + cos2 q sin2 y)1/2

Pr = tan @ p
o = tan 7y p (10)
pZZ—P

4y = tan o

Qg = tan ¥
q, = -1
where
tan a = 2Ar(1 + Be2)

tan ¥ = 2Arp6 J



2 2 2
(1 +8+802) 24 (1 +pe2) L8 gy .1 90
or2 r2 32 r dr d6
1 00 1 99
+ (1 +pe2) =— +2 = =
( ) r dr b6 r2 g

1 A28 (20 2 254
St [3+<3 +3B>Be +459} (11)

Next, introduce the transformation

r/a

p:
(12)
x = JF‘Q
where a is a reference radius, and define
o(r,8) = a®¥(p,x) (13)
h:
He (14)
i = constant

The coordinate p in equations (12) is a dimensionless radius; the coordinate
X, which is linearly related to 6, is introduced for convenience in alge-
braic and numerical work, and the stress function ¥ in equation (13) is a
dimensionless function. The height h, designated as the normal distance
from the apex to a horizontal plane passing through the point r = a, 8 = O,
is defined in equations (14) as a certain multiple of the reference radius a.
If equations (12) - (14) are substituted into equation (11), it can be shown
that the stress function ¥(p,x) must satisfy the differential equation:

L(¥) = F(p,x) (13)

where L 1is the linear differential operator defined by

- 92 2y 1 0
L—{:(l+B+x2)——2+(l+x)B.a_B

dp
d2 1 o2 1 0
+ (1 + x32) B o7 _ 2Bx = + 2Bx —= ——] 16)
( P 3x° P dp dx p* ox (
and
F(p,x) = = + upZP + <SB +20) %2 4 4X4} (17)
2u 3 3

In terms of the dimensionless stress function Y and the variables p,x the
membrane forces ny, ng, Npyg can now be expressed as follows:
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ng = 2y puoPx= > (18)

_ 1 3y 1 %
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Membrane analysis of the scalloped shell, therefore, reduces to the
mathematical problem of solving equation (15) subject to appropriate boundary
conditions. The equation, as can be seen, is a linear second-order partial
differential equation with variable coefficients, and includes all the deriv-
atives of the stress function ¥ up to the second order. It does not seem
possible to reduce it to a known standard form, though it can be solved, as
will be shown in appendix A, by the method of separation of variables.

/

In the next two sections, solutions of equation (15) will be discussed
in detail, along with numerical results, for two particular types of struc-
tures, namely the single scallop and the parachute type structure. The lat-
ter is so called because of its similarity to a parachute in surface geometry,
loading and boundary conditions. In each case, the numerical results for a
similar shell of revolution will also be given for comparison purposes. It
will be seen that the basic mathematical approach outlined in appendix A
applies equally to both cases and yields solutions that are very similar in
form.

THE SINGLE SCALLOP

Consider the symmetric scalloped shell shown in figure 3. It will be
assumed for this particular example that the edge members in the vertical
planes 0 = ieo cannot resist any thrust normal to their planes, so that
Ny = O along these edges. Furthermore, it will be assumed that Np = O along
the edge r = a. It must be mentioned that with the technique to be pre-
sented in this section, it is also possible to prescribe other distributions
of the force N, along this boundary.

Since the structure, as well as the loading, is symmetric about the
vertical plane 6 = 0, it is sufficient to assume a solution symmetric in 6
and confine the analysis to the domain O < r <a, O <0 < 6,5. In terms of
the stress function ¥ and the variables p,x, the mathematical problem of
solving equilibrium equation (15), subject to the boundary conditions
Ng(r,6,) = 0, N.(a,0) = O, can be described as follows:

L(Y) = F(p,x) Osps1l; 0= x = x4 (192)

11



2
Y LA et x = %o (190)

dp-
193y . B 3y 2<2 )}_ )
L9, b2 _ 2 +x2})=0 t =1 19c)
[oap Z32 "3 at p (19c

The variables in equation (19a) can be separated by assuming solutions

of the form bkk @ (x), where the functions @ (x) satisfy a linear ordinary
second-order differential equation with variable coefficients and can be
obtained in the form of an infinite series in even powers of x. By use of
this approach,4 the solution Y¥(p,x) can be obtained in the form:

¥(p,x) = ¥(p,x) + ¥g(p,x) (20)

The function V¥, in (20) satisfies both the inhomogeneous differential
equation (19a) and the inhomogeneous boundary condition (19b), and has the
form

_ 1 =2 n 4 n
¥, (p,%) = 7 ° z X+ up Z Bpx (21)

n=0,2,4,+.- n=0,2,4,.

The homogeneous solution YH(p,x) has the form

Yy(p,x) = Z An¥%rn(p,%) (22)

m=1,2,35%--

where each function WHm’ defined by

Yan = 0 Fy(x) (23)

satisfies both the homogeneous differential equation
L(¥gy) = 0 (24)
and the homogeneous boundary ccndition

52
37 (Ygg)

=0 (25)

The values A, are the eigenvalues of the system described by equations (24)
and (25). These eigenvalues occur, in the present case, as pairs of posi-
tive and negative numbers of equal magnitude, so that the corresponding

A -
homogeneous solutions take on the form o  fy(x), p Am~gm(x), where

4For more details see appendix A.

12
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n
f(x) = }: Co,n¥
N=0,2,4,0¢0
& (26)
n
o) = ) Dpox
n=0,2,4,... J

The homogeneous solution can now be written as

B Am n ~Am n
Yy = App Cm,nx + Bmp Dm,nx

mM=31,2,3y¢00 n=0,2,4,--. m=1,2,3,--- n=O,2,4,00

(27)

Substituting equations (21) and (27) into equation (20), the solution ¥ may
be written

1 =2 '
¥(p,x) = = p zi apx® + ppt }; Bx"
o
N=0,2,4,4.. N=0,2,4,...
M n
+ E: Apo }: Cm’nx
m=1,2,3,... N=0,2,4,...
-\ n
+ Z Byo ™ z Dy X (28)
M=1,2,3,... N=0,2,4,4..

Applying (28) and definitions (18), the stress resultants can be expressed as
follows:

n, = i Z [2a, + Bn +2)(n + l)oun_l_z]xn

+ net Z [LI'Bn + B(n +2)(n + l)Bn+2]Xn - p.p2<—23- + x2>

N=0,2,4,+.-

7\_-_ T
. }Z Ao 2 24 A\iCm,n + Bln +2)(n + 1)Cp pop 1™

m=1,2,3,... N=0,2,4,+4.

+ Z Bmp-(7\m+2) 2 [‘7\mDm,n+ B(n+ 2)(n+l)Dm,n+2 Xt (29)

M=1,2,3,00- N=0,2,4,44
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M=1y2,3, - N=0,2,4,-.
+ Z Bpo Z Am(Ay + l)Dm’nxn (30)
m=1,2,3,-- N=0,2,40¢
1 n-1i \' n-1
n.g =B o }: - noyX + ppt ZL - 3nB,x
n=0,2,%;¢.- N=0,2,4 5000
\ Am—2 n-1i
+ 24 Ayp o }: n(l - Am)cm)nx
M=1,2,3 5«00 N=0,2,45¢00
~-(Ag*2) N1
+ }: Bpo }: n(l + Km)Dm’nx (31)
M=1,253 500 N=0 ;2 34 50«

It should be observed that the homogeneous solutions associlated with the
negative eigenvalues are singular at the point p = O, which is an included
point of the domain. Consequently, the undetermined coefficients By asso-
ciated with these solutions must be chosen as zero. The coefficients Ap
can be chosen appropriately to prescribe suitable edge forces at p = 1
(corresponding to r = a). In particular it is possible to choose these
coefficients so as to satisfy the condition prescribed in (19¢). For parab-
oloids of revolution (B = 0)° the eigenfunctions fp(x) form a set of
orthogonal trigonometric functions, and the coefficients A, can be con-
veniently determined by means of this orthogonality property. In the present
case (B % 0), no such orthogonality property is readily available, and it is
necessary to resort to suitable numerical methods such as collocation, match-
ing coefficients of power series, or mean square approximation. The last
technique has been found to give the most satisfactory results, and its
application to the case of scalloped paraboloids is described briefly in

appendix B.

STransformation (11) for this case is 6 = x.

1L



Consider, as a particular example, the case B =1, p = 0.5, 84 = 1/6.
The homogeneous solution (22) was found to be sufficiently approximated by
the six~-term truncated series

6 [S]
b 7\m n
¥y = }J An¥gn = }; Ao Ez Cpy,nX (32)
M=1,2,005 M=21,29e00 N=0,2,4,+.-

where the eigenvalues A, and the coefficients Ay are listed in table I.
These values have been obtained according to the methods discussed in the
appendixes A and B. The coefficients ayn, B, associated with the particular
solution (21) and the coefficients Cp,, associated with the homogeneous
solutions Yy may then be evaluated by means of the recursion relationships
given in appendix A. In this example, the first 25 terms of each of the
series expansions in X in equations (29) - (31) were used to obtain the
stress resultants presented in figures 4-7.

TABLE I.- SINGLE SCALLOP: EIGENVALUES |Am| AND THE
UNDETERMINED COEFFICIENTS Ap

1| 2.26514 0.453853

2| 6.63706 -.913284kx1072
31 11.0383 .689597x10~3
b 15.4446 -.121309x1072
51 19.8525 A3UT67XxL0™4
6| 2k .2612 - .286088x107%

The broken line in figure 4 represents the meridional force ny at the

edge p = 1 due to the particular solution Yp; the solid line represents the
force ny due to this particular solution plus the homogeneous solution

¥y (eq. (32)). This homogeneous solution is added to obtain the desired
vanishing edge force n;, along the edge p = 1. The difference between the
broken and solid lines in figure 4 indicates the efficiency of this edge
correction by the six—term approximation (32). This efficiency would improve
as more solutions Yy Wwere included in (32). The forces ng, nrg along
this edge are plotted in figure 5.

For the interior points of the domain, it can be shown that only the
first few homogeneous solutions are of importance, since the solutions cor-
responding to higher eigenvalues rapidly diminish as p decreases from
p = 1. The solid lines in figures 6 and 7 represent the stress resultants
in the scallop, while the broken lines represent the stress resultants in the
corresponding shell of revolution (B = 0). The forces n,., ng along the
central meridian (fig. 6) are lower in most parts of the scalloped shell than
in the shell of revolution. The same is true for shear stress along the
edge 6 = 6,, although along this edge the meridional force n, is higher in
the scalloped shell for a considerable distance from the apex.

15



It should be observed that for both types of shells the stresses tend to
be relatively high in the vicinity of the three corners. These stress con-
centrations are pronounced, in the case of the scalloped shells, near the
apex, and in the case of the shells of revolution, near the lower two corners.
For either type of structure the corner regions need special attention and
should be designed to withstand higher stresses than the rest of the shell.

The method of analysis for a shell terminated at an inner boundary
r=b#0 (p=p, #0) would be similar. In this event, however, the solu-
tions corresponding to the negative eigenvalues would have to be included in
the analysis, since these solutions are necessary for prescribing appropriate
boundary values at r = b. If the lowest eigenvalue Ikll is sufficiently
high, then the coefficients Ap, By associated with the two sets of homoge-
neous solutions can be determined separately, by mean square approxXimation at
each of the two boundaries. Otherwise, it may be necessary to use an itera-
tive scheme, similar to the one described in reference 8, in order to obtain
a satisfactory solution.

It should be noted at this point that the bulge parameter B has been
prescribed unity only for the purpose of the numerical example. The tech-
nique places no restriction on the magnitude of this parameter, although, of
course, it must always be positive, since surfaces with negative B belong
to a different family.

PARACHUTE TYPE STRUCTURE

The method demonstrated in the preceding section can also be applied to
the parachute type structure with an opening at the top, as shown in fig-
ure 8. In this case, however, the circumferential force ng need no longer
be zero at 6 = *6,. Because of structural symmetry and symmetric loading it
is sufficient to solve the problem, as for the single scallop, in the domain
bsr<a, 08 < eo.

The boundary condition at 6 = 6, can be obtained as follows. If the
rope is considered an individual structure, loaded by the membrane forces
from the shell at the edge 6 = 85, it can be shown that the rope tension T,
at any coordinate r, must satisfy the equilibrium condition (see fig. 9),

[1 + ba2r2(1 + pe2)%]%/2
T = o fp
2A(1 + Bo2)

hapapoor(l + MAPr3(1 + g62)2]%2

2a(1 +ABe§)

ng (33)

On the other hand, considering the entire structure sbove a given radius r,
it follows that the rope tension T and the membrane forces Ny, npg must
also satisfy the condition of equilibrium of vertical forces:

16



pl1 + 4A2r2(1 + 595)2]1/2

T = s _ P
2a(1 + pe2)r N pN
eO 90
- lLaAer (1 + pe®)n, do - LPAarzf Bon. ., 46 (34)
O o

where P 1is an arbitrary vertical load concentrated downward at the apex,
and N 1is the number of scallops. The load P may be assigned any value
appropriate to the problem of interest. Eliminating the rope tension T
between equations (33) and (34), the boundary condition at 6 = 6, is
obtained:

r2pe n,(r,6 ) + rzfeo[(l + Bo2)n.. + POn..,l1d6 = w? P (35)
079 " Mo o r 0 4ANa  LApaN

The boundary conditions at the edges r = b and r = a depend on the
nature of the structure. For a model parachute it would be reasonable, for
example, to expect an almost vanishing meridional force n, along these
boundaries: such a surface would be expected to carry the applied loads by
means of tensile and shear forces alone, since the material may be assumed
incapable of sustaining compressive stresses. Assuming uniform normal pres-—
sure, the governing differential equation, condition (35) and the above
requirements can be described as follows:

L(¥) = F(p,x) P S PS1; 0 <x < x4 (36)
3%y f [ 1 dv ., B 62w> 10y 1 %y X)]
pzﬁ"o(apzz( L I an?F PP T B S ox
=2 5

_ Xof 4[2 ( z> s ﬁ] _ B
T T e 2 X, +{B + 5) ¥o + 5 ka2 (37)
ny ~ O at p=po (r=20) (38)
np ~ O at p=1(r =a) (39)
np , ng =0 (%0)

The solution of equations (36), by the method described in appendix A,
can be written in the form:
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¥(p,x) = 21_p_' o2 Z apx" - 51{; log(p N1 + x2)

N=0,2,4,...

A
+ ppt z B nxrl * Z Apo " Z Cm,nxn

N=0,2,4,4.. m=1,2,3,... N=0,2,%4,4..
+ Z Bmp_?\m Z Dm,nxn
M=1,2,3,e00 N=0,2,4,e..
where

¥, = gz }: anxn + ppo* zJ ann - é% log(p /1 + x2)

N=0,2,4,440 N=0,2,4,40.
Yy = M Cpp X0 + Byo | D_ _xA
H~ ApP m,n mP m,n

M=1,2,3,." N=0,2,4,¢0 M=1,2,3,00. N=0,2,4,40

w o BB 1 J (42)

2pa®N [ (1 - x,)B + B tan™? x, + (x/3)

A comparison of equations (41) with (28) reveals that the forms of the
two solutions differ only in the term k/2 log(p~1 + x2). By means of
equations (41), the membrane forces n,., ng, n.y and the rope tension T can
be expressed as follows:

k 1 gL - ¥°) 1
=X Ll + 2= T+ = > 2ay + B(n +2 +1 n
tr 2p o2 * (1 + x2)2J 2u . : = Hn ¥ Dogp I
n=0,2,4,...

+ pp? }: [hp, + B(n +2)(n + 1)B 157 - <§-+ x%)

N=0,0,4,-
N2 [A.C + B(n +2)(n + 1)C 1x®
+ ApP n’m,n T Pln n m,n+2
m=l)2}3,oco l’l:O,g,éL,...
\ -(A\p*2)
+ }J By [“%mDm,n + B(n +2)(n + l)Dm,n+2]xn
M=1,2,3)0s: N=0,2 54,000

(43)
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+ L EJ 2opxt + pp? zz 12B,x" - x2
N=0,2,4,50- 0,254 00

7\_
+ E: Age W F EZ An(Ag = 1)Cpp, nx™

. z Bmp—(xme) Z Ag(hm + 10Dy o (k)

Npg = ﬁ _ _k_ iz. X ._]?_ Z‘ ncx,nxn-l - up? z 3anxn‘l

N=0,2,4,. N=0,2,4,+.
Ap—2 N
+ }: Ao o }J n(l - Ap)Cp .nX
m=1,2,3,. N=0,2,4,.
—(7\m+2)
+ Z Byo z n(l + 7\m)Dm’nxrl (45)
M=1,2,3,... N=0,2,4,.

[1 + bp2p2(1 + x3)2]Y2

(1 + xg)

T = 2pa®J/B x,p ng (p,%,) (46)

The boundary conditions (38) and (39) and the requirement (40) represent
perhaps an ideal situation, but the tensile regquirement (40) could be satis-
fied even if the forces npy were tensile at the upper and lower edges.

The stresses due to the particular solution ¥ are of interest in view
of requirement (40). In the present investigation it has been found that for
a given choice of the parameters N, po(<<l) and u the above requirement
will be satisfactorily met if P and k are less than certain readily deter-
mined critical values Ber and ker+« The significance of these parameters
will be discussed later. It should be observed in passing that for practical
parachute models N is generally large (say >10). In the present study it
has been found that values of Ikmj depend largely on N and are of the order
of magnitude mN. For large N, the particular solution Wp then becomes
the dominant solution, and the approximate solution ¥ =~ ¥, can be used to
obtain satisfactory values for stresses in most parts of the shell. Consider,
as a numerical example, a parachute model with 12 scallops (N = 12), P = 0.1
and B = O.4. For this combination of the geometric parameters, the critical
values of B, k have been determined to be 0.5 and 0.0017, respectively, and
the corresponding solution ¥, meets requirements (36) - (38). It may be
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recalled here that, as for the single scallop, the two sets of homogeneous
solutions associated with the positive and negative eigenvalues are to be
used to satisfy proper edge conditions at the lower and upper boundaries.
Since condition (38) at the upper edge is already satisfactorily met, the

coefficients By, associated with the solutions in p_Am5 may be appropriately

chosen as zero. Furthermore, with B = Bop, the edge forces ny at p =1
due to the particular solution are already very small, and a five-term trun-
cated series for Yy satisfactorily meets requirement (39). The correspond-
ing five values of Ap, Ay are listed in table IT.

TABLE II.- PARACHUTE TYPE STRUCTURE: THE CONSTANT k,
THE EIGENVALUES |Ay| AND THE UNDETERMINED
COEFFICIENTS Ap

k = 0.001726
1 | 12.7379 | -0.2489hk2x1073
2 | 23.3730 .200055X1.0~4
3 | 33.5535 | -.488396x107°
b} 43.5804 179266X107°
5 1 53.5374 | -.115634x10-5

Before discussing the results for this case and a similar shell of revo-
lution, it is necessary to contrast certain features of the solutions for the
two types of structures. For both the scalloped shell and the shell of revo-
lution it is possible to find a solution V¥, that meets requirements (36)-
(38). In the shell of revolution, the functions fy form a set of orthogonal
trigonometric functions. The ccefficients Ay can then be readily deter-
mined, from this orthogonality property, to prescribe appropriate edge forces
at p =1. Along this edge the force n;, due to the particular solution ¥p
is equal to (1 - pg)/hp, and the dimensionless sum of its vertical components
along this edge is a downward force of magnitude 6,(1 - pg). The sum of the
vertical components of the force ny due to the homogeneous solution ¥y
vanishes along this edge. This implies that a proper boundary condition at
o = 1 consists of a distribution of the force ny, which has the same verti-
cal resultant as that due to the particular solution. Two such distributions
are shown in figures 10(a) and 10(b). For the scalloped model, on the other
hand, it is not necessary to follow the same pattern because the correspond-
ing homogeneous solutions do contribute a vertical resultant. In this case,
however, the coefficients A, have to be determined by numerical techniques,
with resulting numerical difficulties if N is large and if a large number
of terms of the homogeneous solution are needed to prescribe vanishing edge
force n, at p = 1. However, if B is close to Per, then only a few terms
of the homogeneous solution would be adequate to meet reguirement (39). This
is true because in the scalloped model, as will be seen later, the forces nyp
decrease as f increases and become very small at the base when B 1s close
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to Bgr. In the shell of revolution, on the other hand, these forces increase
toward the base and become almost constant in the lower parts of the shell.

The membrane forces n,, ng, npg and the rope tension T presented in
figures 11- 14 have been obtained by means of the first 25 terms of each of the
series in x 1in expressions (43) - (46). The broken lines in these figures
represent the membrane forces in a similar shell of revolution subjected to
the boundary condition in figure 10(b) for & = 0.1. It can be seen from
these figures that, for equilibrium of the shell, all three stress resultants
ny, ng, nyg are necessary. For the particular parameters chosen the force
ny decreases toward the edge p = 1. This drop in ny, 1is more noticeable
along the central meridian than along the edge 6 = 65 (fig. 12). The hoop
force ny at a given radius (fig. 13) remains nearly constant although its
magnitude varies with the radius and reaches a peak value at the edge p = 1.
The shear forces are relatively low, except in the lower half of the shell
near the edge 6 = 6,. The rope tension T (fig. 14) has a maximum value at
the base (p = 1) and decreases steadily toward the apex.

It is interesting to note how the membrane forces in the scalloped shell
differ from those in a similar shell of revolution (figs. 11 and 12). It can
be seen that the forces ny 1n the scalloped shell are significantly lower
than those in the shell of revolution. The forces ng are also lower but not
as significantly as the forces n,.- The shear force n,g in the shell of
revolution vanishes at 6 = 6 o’ whereas in the scalloped shell a relatively
low but nonvanishing shear force is necessary at this edge. The behavior of
the forces np, ng 1in the shell of revolution along 6 = 6, 1is also worth
noting: These forces have high magnitudes in the neighborhood of the lower
corners, and ng even changes sign and becomes compressive.

It should be mentloned at this point, that the solution k/Ep log
(le + x2), with k = 0.0017 in the particular example, corresponds to a down-
ward load of magnitude 0.357%p at the apex. In figure 8, the ropes, but
not the scallops, are continued to the apex. Prescribing a value for k
therefore amounts to assuming a certain amount of tension in these ropes at
P =Py In the particular example considered, if k > 0.00l7 the edge forces
ny at p = [N due to ¥, would be compressive, while if k < 0.0017 these
forces would be tensile. In either case, appropriate values for n, would
have to be prescribed along this edge by means of the homogeneous solutions
associated with the negative eigenvalues.

It was mentioned earlier in this section that in order to meet the
tensile requirement (40), the parameter B should be less than B,,.. This
can be illustrated in figure 15 where membrane forces due to the dominant
solution ¥, are plotted along the central meridian for different values of
B. The constant k 1in each case has been chosen equal to kepr tTO meet
requirement (38). This figure shows that when B is very small the menmbrane
forces approach those in a corresponding shell of revolution (B = 0). How-
ever, as B increases the stress resultant n, decreases markedly, and, for
B = 0.6, even changes sign and becomes compressive in the region p = 0.75.
The hoop force ng decreases also, although not as significantly as the
meridional force n,. It can be seen that when B 1is less than 0.5, the
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shell (and a corresponding parachute) could support the applied uniform pres-
sure by means of tensile and shear forces alone.

SCOPE AND LIMITATIONS

The stress function approach is valid as long as there exists a one-to-
one correspondence between points of the middle surface and their projections
on a reference plane. The scalloped paraboloids (ea. (9)) meet this
requirement. The mathematical approach in appendix A for finding this stress
function ¥ relies on two important conditions. First, the differential
equation and the boundary conditions must be such that the method of separa-
tion of variables can be applied. Second, the solutions involving the vari-
able x must be obtainable in the form of an infinite series in powers of x.
These requirements are fulfilled in the problems considered so far. It is of
interest to mention other problems where these requirements may be met.

Consider, for example, the more general class of surfaces
z = Ar™(1 + p6%) (47)
of which the scalloped paraboloids constitute a special case. These surfaces
meet the above requirements for application of the stress function approach.

When such shells are subjected to uniform normal pressure, the stress function
¥ must satisfy the differential equation.

<E+B+Ex2>5_2¥_e(n-1)sxl %Y L1 (- 1)1 +x2) B 7Y
2 2 S 2 P

dp dx 2 P Ox2
clom-o@ +@) L som - 1)px L9
2 ° 3p 2 Ox
2-n 3
=2 5 + ugt n” oy (pzer il 38)x2 + ngx%J (48)
2 n + 1 n+1
where the membrane forces are related to the stress function Y as follows:
h
2
p op 0= dx= n
>Fy n
ng = —= - ko X° (%9)
9p°
1 0¥ 1 oy
Opg = JE’“E E
o= OxX P dp ox
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It can be verified that the boundary conditions, similar to those for the two
cases considered, are such that the method of appendix A can be applied to
equation (48) to obtain solution ¥ in the form:

¥(p,x) = g—p 0 Fo(x) + pp’Fp(x) + 5; o°F 5 (%) + ¥(p,x) (50)
where
a=4-n
y=mn+2 (51)
5=2-n
= 0 for a single scallop
: % O for a parachute model
When & = (or n = 2) the third term of (50) is replaced by k/2u log

(pJ1 + x2)

It should be pointed out that it is not generally possible to find a
solution in the form of equation (50) if any of the indices «, 7, & is
equal to an eigenvalue of the corresponding eigenvalue problem. For example,
A =1 happens to be an eigenvalue for all n; hence, difficulties may be
encountered when n = 1 and n = 3. In order to predict whether a solution in
the form of equation (50) does or does not exist for a given problem, it is
necessary to investigate each individual case further. It is interesting to
note that since the shells corresponding to n > 2 become relatively flat in
the polar regions, the membrane forces must be high in these regions in order
to balance the applied normal pressure. For such cases the structure would
require additional reinforcement in the upper regions.

CONCLUDING REMARKS

In the preceding sections it has been shown that the stress function
approach can be successfully used in solving problems of scalloped parabo-
loids. It has been further demonstrated that the surface parameters associated
with these problems may profoundly affect the application of the scalloped
shell - particularly where a compressionless state is desired. The two
scalloped structures considered in detail in this report are characterized by
the parameters N, p, py, B, and defined by equation (9). It has been shown
for the parachute model that for a given large N and given values of the
parameters P H» it is possible to use Kk = kop 1Iin the particular solution
¥, to determine the maximum allowable bulge parameter B.p., beyond which the
meridional stress could become compressive. It was found in the particular
example considered that for given N (= 12) and py (= 0.1), the greater the
value of p, the smaller the value of Bepr. It would be useful to carry this
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investigation further and plot relationships between p and By, for differ-
ent sets of p, and N. Such plots could serve as a useful aid in the design

of parachute-type structures.

As mentioned earlier in this report, the only difference between the
forms of the solutions for the two cases considered is the term k/2u log
(pJf1 + x2), which is singular at the apex. For the single scallop, this
term is absent. For the parachute model shown in figure 8 this term is used
to prescribe a certain amount of tension in the ropes in the region p < py-
Solutions of this type may be useful in other aspects of parachute analysis,

as well.

In the case of the single scallop the character of the stresses does not
seem to be radically affected by the magnitude of the bulge parameter B; but
such is not the case with the parachute type structure, as can be seen in
figure 15. The latter structure, when designed to the critical B, has a
lower hoop stress and a much lower meridional stress than the corresponding
shell of revolution. In comparison with shells of revolution, indications
are that the scalloped shell may be an efficient structural form warranting
further study. It would be useful indeed to extend the analysis to include
bending, deformation, and material properties, and to consider the scalloped
shell for other structural applications such as pressure vessel bulkheads.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., 94035, May 7, 1968
124-08-06-01-00-21
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APPENDIX A
THE SOLUTION ¥ FOR THE SINGLE SCALLOP
PARTICULAR SOLUTION

Consider the differential equation for the single scallop,

L{¥(p,x)] = F(p,x) ; 0O<sps<1, 0<x s x (A1)
subject to the boundary condition

gzg - pp2X%> =0 at X = Xg (a2)

The operator L and the function F are defined in equations (16) and (17).
Let

¥(p,x) = ¥p(psx) + ¥g(p,x) (a3)
where ¥, satisfies equation (Al) and the boundary condition (A2). If ¥
is assumed in the separated form,
¥ (p,x) = = BFq(x) + He*Fg(x) (ak)
D n
then Fa, FB must satisfy the equations
1
B(L + x®)F, - 2PxFy +2(2 + B + 2x2)F = 1 (85)
4] 1 _ 8 20 2 4
B(1 +x2)FB - 6B}LFB + bk + 3p +l+x2)FB =3t 3B + 5 ) x + hx
0 <x % %, (46)

and the boundary conditions

o
P
b

2

Fo(x5) =

B 1%

FB(XO) (A8)

When used as function superscprts; the bfimés deno%e_appropriate dif-
ferentiation with respect to x.
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Solutions for F.(x), FB(X) can be found in the form of a convergent
series containing terms in even powers of x as follows:

Fo(x) = fg(x) + pegy(x) (A9)

Fg(x) = £p(x) + ppgp(x) (A10)

where {,, Mp are constants to be determined and

£ (x) = Z (A11)
Os2354 5040

£p(x) = Z Bpx” (a12)
032,450

g =) (413)
02,4 504

gald) = ) Ea (1)
0,2,4 50..

The functions £, T must satisfy the inhomogeneous equations (A5) and
(A6), while 8,2 gB must satlsfy the corresponding homogeneous edquations.
The ccefficients an, “n’ Bn, Bn can then be obtained from the resulting

recurrence relationships,

e~ o o= il - 96 v 26+ p)log - bt} (15)

1 _ 1 ) 1 _ . l*_ ' . , }
e S T o) a1 1) {7n [n(n - 7)B + (% + 38)16, - 168, ,p (816)
" _ 1 - . ) )
e B(n+2)(n+1) {[n( 308 +2(2 + B)Jayg + “’C‘h—z} (ALT)
1" l ) .
Pnte = - [n{n - 7)B + 4(h + 3B)]18" + 168, _ }_ 218)
* B(n+—2)(na-1).{ * * n n-2 (

for n=20,2,k4,
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where

7o =1, In = O for n
_ 8 1 20
76 - § > 72 3B + T; b
H
7; = L4 Tn = O for n
aj =0 for n <€ 0 ; BA =0 for n
and n " ‘ n "
Ay = Bo =1 ; ag = By =0 for n

The constants of integration pg, pg in (A9) and (A10)
requiring that Fy, Fg satisfy conditions (AT) and (A8), so

- L

032 4 y0en

D S

Oy2 4500

(x3/12) - T Bpxg

-
g
1l

z B;xg

Defining the coefficients «,, B, by
9y = “A * Hotn
By = Bn +mphy 0 =0,2, k4

The solutions F, and FB can be finally written in the form:

Fa(x) = E: ahxn
N=0,2,4 ...

- n

FB(X) E: X

N=0,234 500

HOMOGENEOUS SOLUTION

Consider a homogeneous solution

Ygm(psx) = o £ (x)

>0

(A19)

are obtained by

that

(A20)

(A21)

(A22)

(A23)

(A2k)

(A25)
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which satisfies

L(Yg) =0 (426)
and the boundary conditions
32

Fye Yim(e,x) = 0 at x = X, (A27)
o)

The function fm(x), then, must satisfy the equation

B(L + x2)£) - 2B(Ny = L)xfp + AglB(Ag - 1) + Ap(1 + x2)1gy = O (A28)

subject to the condition
AMo(Ap = D) Ep(xs) =0 at x = xg (A29)

A nontrivial solution for fm(x) exists only when A, equals an eigen-
value of the problem defined by equations (A28) and (A29). The values Ay = O
and Ay = 1 are cbviously two eigenvalues. However, the corresponding
homogeneous solutions make no contribution to the membrane forces ny, g,
np.g. The eigenvalues of interest, therefore, are associated with the

condition
falxg) =0 (A30)

It should be observed that the solution for fp, when one exists, can be
obtained through the method of infinite series, that is, fp(x) may be expanded
in the form,

p(x) = }: Crp,nX" (A31)
N=0,2,4,0+0
where
Cm,o0 = 1
Cu,n = 0 for n <O
and
c IS [%(n+l)— 2n(A\gp-1)+ (# + {) A2 - A,lC +ﬁﬁ C
m,n-+z (n+l) (n+2) m R m~ “m{vm,n g Cm,n-2
for n=0,2, 4, . . . (A32)

Equation (A31l) can be applied to (A30) to obtain an infinite series in powers
of MAp- The zeroes of this infinite series are the required eigenvalues.
From a practical standpoint, the leading eigenvalues can be found by truncat-
ing such a series after a finite number of terms and then finding the roots
of the resulting polynomial in Ap. In the present work, it was found that
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for large N(= ﬁ/@o) the polynomial approach gives convergent values only for

the first one or two zeroes of the infinite series. A more satisfactory
approach in this case has been found to be the method of interpolation or the
false position method (ref. 9). It must be mentioned, however, that this
method is to be applied to equation (A30) in a special way and not to the
truncated polynomial. The process essentially consists of selecting a set of
values for A, at chosen fixed intervals, obtaining the coefficients Cp p
from (A32), and using these Cp,y in (A3l) to evaluate each fp(xg)-. Thé
approximate zeroes of (A29) are then easily located and it is only necessary
to repeat the entire process a suitable number of times in order to converge
to suitably accurate roots. In order to use this approach most effectively,
it is advantageous to have prior information about the character of the eigen-
values Km' In this connection the following discussion will be of interest.

If, instead of using the form (A31l), f£y,(x) is expressed in the following
form:
Ap—1
£
f,(x) = (1 + x2) U (%) (A33)

then it can be verified that v, must satisfy

+ | — + —|u, =
L i B|E
up(x,) =0 (A35)

Furthermore, if Ay 1is a complex eigenvalue and u, the corresponding com-

plex eigenfunction, then their complex conjugates Xﬁ) Gﬁ. also satisfy
equations (A34) and (A35).

Using up, Uy in Green's first formula (ref. 10)
X X,
o n_ — %o ©
JF u;pm dx = (uéum)o -Jf uiug dx (A36)
o o

and realizing that upy(xy,) = O and (because of symmetry) ui(o) = 0, equa-
tion (A36) reduces to

XO Xo
JF uﬁﬁm dx = —b/\ LEAVANNGE (A37)
o o

Substituting for u& from equation (A34) and rearranging yields
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‘[‘x a j‘ 1 a
X + — . 1} U. X
A2 = 4o Ty (1 rx2)2 TR (A38)

I [(1 P Jumum dx

where B >0 by definition.

It is evident from the above expression that, since is a nontrivial
solution, Aﬁ must always be positive definite. Hence, the eigenvalues are
always real, occurring in pairs of positive and negative values of equal mag-
nitudes. Consequently, the homogeneous solution ¥y can be written as

% (p,x) = Z by En(x) + By gy () (439)

m=1,2,3,

where the functions fp, gy correspond to the eigenvalues +\p and -Ay,
respectively. The function fp 1is obtainable in the form defined in
equation (A31), and gy is obtainable in the form

gn(x) = Z Dip,nX (ALO)

where the coefficients Dy , can be generated from the recurrence relation
(A32) by means of the negative value -A,- The stress function can then be
written as

_ 1 =l n 4 \" n
¥(p,x) = o ° Z o X+ U Z B x
n=o0,2,4, n=0,2,4,
A n
+ Z Ap ™ Z Cyp,nX
m—1,2 8; .. n:O,Z"L,
+ B P Dpy X (A1)
m=1,2,3,... N=0,2,4, 4.

The homogeneous solutions associated with the negative eigenvalues tend to
infinity as p approaches zero. Hence, the coefficients By associated
with these solutions must be chosen to be zero if p = 0 is to be an included
point of the domain. If the domain is terminated at an inner boundary

p=p, (corresponding to r = b), then the coefficients By, may be different
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from zero, and their values would have to be determined by resorting to an

appropriate numerical technique, such as approximation in the mean, together
with an iterative scheme.

THE SOLUTION Y FOR THE PARACHUTE TYPE STRUCTURE

For the parachute type structure the stress function ¥ must satisfy
equation (36) subject to the condition (37). The solution for this case is
similar to that for the single scallop and can be written as

¥(p,x) = 2l—u p? Z apx? + pgt Z B X" - %I log(p N1 + %)

n=0,2,4,... N=0,2,4,...

+ z I:Amp?\m £ (x) + Bmp_xm gm(x{J (Ak2)

M=1,2,3,00.

The coefficients S B, and the functions fns» 8m can be found using the

approach outlined earlier in this section, where Mo and Mg are expressed
as follows:

1 _ 1 2 +3B v 2 1 n
"3 :O§4_“Gmn‘::ﬁf% n+1“'n—2>xc
T (a43)
"o 2 4+ 3[3 "o 2 n n
n=o,é%4,...(§ﬁan n+ 1 n n+1 n- )xo
S22 Ly )3 555'_£+_5_BB'_4_B;12£1
3 9°° 570 n=o =4 D p+1 ™M pn+1/)0°
p_ = e e e o ol _,A,__,A,’ L . _", - . .
B Z 513 n B ll- + 5[3 Bn _ l"Bn_z Xn
N=0,2,4,... “n n+1 B n+1)°
T (ALL)

The value of the constant k in (AL2) depends on the tension in the ropes in
the region p < Pye

For the parachute type structure it can be verified that the function
um(x) must satisfy the boundary condition

(A& - Lxoun(xo) + (1 + xB)ul(x,) =0 (ak5)

where
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X, - XO umﬁm dx XO —
. ‘]‘o w Ty dx +‘]\o o XZ)_Z - .l + x% um(Xo)um(xo)i-X (Ah‘6)

A

(3

X
Jo 5 * ] e &% - 1 el

+XO

It follows from equation (A46) that A> must always be real. The positive
definite character of Aﬁ is difficult to establish in this case, but since
the solutions corresponding to negative A2 have a rapidly oscillating
singularity as p becomes small, the unde%ermined coefficients associated
with these solutions may be chosen appropriately as zero. The eigenvalues of
interest, then, are related to the positive values of %i and are easily
obtained by the interpolation procedure described earlier in this appendix.

32



APPENDIX B
MEAN SQUARE APPROXIMATION FOR COEFFICIENTS Ay

The method of mean square approximation, used in determining the coeffi-
cients Ay of equations (28) and (41), will be described briefly in this
appendix. Consider the case of the single scallop subject to the condition

2
[}_a_\y.+_[3__a__¥_up2g+x2 = Q
Pop o2 Ox2 3
(B1)
at p=1
Using V¥, as defined in (28), the above condition can be expressed as
Z Ap Z [MeCry,n + Bln +2)(n + 1)Cp oyl
M=1,2,35¢0 N=0,2,4 5
1 n
- Ez [20, + B(n +2)(n + 1oy 4nlx
n=0,2,4,
+p }: [)+Bn + B(n +2)(n + l)Bn_,,z]xrl - p<§- + x2> =0 (B2)
N=0,2,4, -
or, more concisely, as
z Apgn(x) - y(x) =0 (B3)
M=1,2,3,..
where
gm(x) = Z am,nxn
=0,2 ce
n=0,2,4, (B)_I_)
y(x) = Z b X

n=0,2,4,..

The coefficients 8nons Hn in equation (B4) are defined by
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am,n = Mlm,n * B(n +2)(n + l)cm,n+2

My = - g; [2ay + B(n +2)(a + Doy,] ) (85)

- ulkpy + Bn +2)(n + 1)Byyz - 84

where

5o=§, 5, =1
(B6)
0

Op = for n >2

The summation in (B3) is an infinite series, which includes correspond-
ingly an infinite number of the undetermined coefficients Ap. For practical
purposes this series is truncated after a suitable number of terms, k, and
the coefficients Ay are determined to minimize the square of the difference

between the sum by Amgn(x) and the function y(x) in the interval
1,2,...K

0 < x5 X5+ This is the basic principle underlying the technique of mean

square approximation (ref. 11). Its application to scalloped paraboloids can

be described as follows:

Define
R(x) = Z Apgn(x) - y(x) (B7)
M=1,2,;3,¢0.K

2

X, X0
Q =k/; [R(x)]® ax :L/; {;:lzgz.kAmgm(x) - y(x)} ax (B8)

For Q to be minimum the following conditions must be satisfied:

and

—a—(Q)=o for r=1,2, « . . , k (B9)
OA,
Hence, the condition
%, %o
Jf [T Apgn(x)er(x)lax =\/ﬁ y(x)g,.(x)dx r=1,2, . ..k (B1O)
e} (o]
or, interchanging the order of integration and summation,
X0 %o
}: Amh/\ gm(X)gr(X)dX =b/\ y(x)gr(x)dx r=1,2, . . .k
me=1,2,e.. O ° (B11)
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Conditions (Bll) can be expressed as a set of k simultaneous equations
in unknown Ay, that is,

er mfm = By rm=1,2, ...k (B12)
where
XO a a x sS4+n+1
~ _ r,s°m,n"o
“rom _‘/; e () gy (x)ax = 22 }: s +n +1 (313)
5=0,2,4,000 N=0,25%,...
X
(0] Bpép | g s4n+1
B, = x x)dx = — 2= x Blk)
rf y(x)ey(x) Z Z n+s+10° (
© 520,2,4 5000 N=0,2,4,...

for r,m=1,2, .. .k

The unknown coefficients Ay are determined by solving the simultaneous
equations (Bl2).

The results presented for the two examples have been obtained by the
technique Just described. When the structure has a boundary at p = p
(corresponding to r = b) and the magnitude of the lowest eigenvalue, T%ll,
is sufficiently high, the homogeneous solutions are such that any disturbance
produced at the edge p = 1 decays before reaching the edge p = Po* The
method given here, then, can be used separately for correcting the value at
each of the two boundaries, p = py and p = 1. In other cases it may be
necessary to combine the present approach with an iterative scheme similar to
the one described in reference 8.
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Figure 1.- Middle surface of the shell in cylindrical coordinates.
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Figure 2.~ Shell element.



Figure 3.- Middle surface of the single scallop.
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Figure 8.~ Middle surface of the parachute type structure.
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